文理学部シラバスTOP > 文理学部 > 数学科 > 数学講究2
日本大学ロゴ

数学講究2

このページを印刷する

令和元年度以前入学者 数学講究2
教員名 吉田健一
単位数    3 学年    3 開講区分 文理学部
科目群 数学科
学期 後期 履修区分 必修
授業の形態 同時双方向型授業(Zoom)+一部対面授業
Blackboard のコースID:20212941
授業概要 ・3・4年次における卒業研究の前半として,数学講究1の内容を継続しつつ,専門科目(代数系)の知識を深めていく。
・教科書の輪読を通して,グラフの理論を学修する。
・身近に潜む数学などから学修者自らテーマを選択して発表する。
授業のねらい・到達目標 ・離散的な現象からグラフの問題を設定できる。
・教科書の内容を熟読して,専門の内容を分かりやすく発表することができる。
・ゼミに積極的に参加し、その内容について他者と議論することができる。
・テーマを自ら選ぶことを通して,生活における数学の重要性を説明できる。
この科目は文理学部(学士(理学))のディプロマポリシーDP1, DP3, DP4, DP6 及びカリキュラムポリシーCP7, CP9に対応している。

なお新カリキュラム(令和2年度以降入学者対象)では,文理学部(学士(数学))のディプロマポリシー DP1~8 及びカリキュラムポリシー CP1~8に対応している。
・学修から得られた豊かな知識と教養、及び、自己の倫理感に基づいて、数理科学の役割を説明することができる(A-1-2)。
・現代社会における数理科学の役割を理解し、そのことを踏まえて、国際社会が直面している問題を説明することができる(A-2-2)。
・数理科学に基づいて学んだ知識をもとに、物事の本質を論理的、客観的に捉えることができる(A-3-2)。
・日常生活における現象に潜む数理科学的問題を発見し、内容を説明することができる(A-4-2)。
・新しい問題に取り組む意識を持ち、そのために必要な情報を収集することができる(A-5-2)。
・親しい人々とコミュニケーションを取り、数理科学の専門的知識について議論することができる(A-6-3)。
・学修活動において、専門的知識を活かしつつ、自分の役割分担を理解し、他者と協働して作業をすることができる。
(A-7-3)。
・学修状況を自己分析し、その成果を評価することができる(A-8-3)。
授業の方法 授業の形式【卒業研究】
①授業方法は教員による説明と学生個人によるプレゼンテーションを中心に行う。
②学生の半数は研究室に出席し, 残り半数は Zoom にて参加する。ただし, 体調が良くない場合は Zoom にて参加する。
③発表者は,当学科で作成したテキストを熟読し,自ら内容を良く整理し,原則として黒板にて発表する。
Zoom の画面共有機能を利用して発表を行うこともできる。
④発表者以外の受講者も,テキストを熟読してきた上で,セミナーにおいて自らの理解あるいは不明な点について,Zoom のチャット機能を利用して質疑応答をし,自らの理解を深める。
⑤受講者は復習に十分な時間をかけ,個人発表の他,レポートの作成,グループ学習の形で学修成果を公表する。
⑥なお、授業計画は学修者の能力、関係する講義の進行状況に応じて変更されることがある。
履修条件 数学科の内規による。対象者は原則としてゼミに所属する者に限る。
授業計画
1 指導教員のアドバイスに基づき,自由発表の研究テーマを見直す(A-5 挑戦力, A-4 問題発見力)。
【同時双方向型授業+対面授業】
【事前学習】数学講究1の自由発表の記録を見直す(A-8 省察力)。 (2時間)
【事後学習】図書館サイトなどを通じて,研究領域に関する文献を調査する(A-1 知識と教養)。 (3時間)
2 方程式の解法について学修する(教員による講義)と計算演習を行う。【同時双方向型授業+対面授業】
【事前学習】高校で学修した因数分解,解と係数の関係について復習しておくこと。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。 (3時間)
3 教科書の輪読(1)「グラフの基本概念」を発表する(A-3)。【同時双方向型授業+対面授業】
【事前学習】担当教員の指示に基づいて、グラフの基礎概念について学修しておくこと。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。 (3時間)
4 教科書の輪読(2)「オイラーグラフと一筆書き」を発表する(A-3)。【同時双方向型授業+対面授業】
【事前学習】担当教員の指示に基づいて、一筆書きの例を調べておくこと。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。 (3時間)
5 教科書の輪読(3)「ハミルトングラフと正多面体」を発表する(A-3)。【同時双方向型授業+対面授業】
【事前学習】前期の教科書第2章を参考にして, ハミルトングラフについて調べておくこと。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。 (3時間)
6 教科書の輪読(4)「四色定理」を発表する(A-3)。【同時双方向型授業+対面授業】
【事前学習】担当教員の指示に基づいて、「色々な地図」の例を調べておくこと。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。 (3時間)
7 グループに分かれて,「グラフの理論」をテーマに,その内容をグループ内で議論する(A-6, A-7 リーダーシップ)。【同時双方向型授業+対面授業】
【事前学習】第2回から第6回までの内容を復習しておくこと(A-8)。 (2時間)
【事後学習】グループごとに作成した解答を各自で確認しておくこと(A-8)。 (3時間)
8 自由発表のテーマを個別に見直す。担当教員と個人面談を行い,自由発表の内容を整理する。【同時双方向型授業+対面授業】
【事前学習】第1回で検討した自由研究のテーマを確認し,整理しておく。 (2時間)
【事後学習】担当教員のアドバイスに基づいて,自由研究の発表内容を整理する。 (3時間)
9 自由発表(1)発表者が調べてきたテーマの発表を行う。【同時双方向型授業+対面授業】
【事前学習】研究テーマに関する文献・資料を調査する。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。発表者は卒業論文作成(数学研究2)に備えてノートに整理しておくこと(A-8)。 (3時間)
10 自由発表(2)発表者が調べてきたテーマの発表を行う。【同時双方向型授業+対面授業】
【事前学習】研究テーマに関する文献・資料を調査する。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。発表者は卒業論文作成(数学研究2)に備えてノートに整理しておくこと(A-8)。 (3時間)
11 自由発表(3)発表者が調べてきたテーマの発表を行う。【同時双方向型授業+対面授業】
【事前学習】研究テーマに関する文献・資料を調査する。 (2時間)
【事後学習】発表者が述べた内容をノートに整理しておくこと(A-8)。発表者は卒業論文作成(数学研究2)に備えてノートに整理しておくこと(A-8)。 (3時間)
12 自由発表のふりかえり:発表者の内容を基にして,ゼミで課題を探求する(A-8, A-4, A-5)。教員は自由発表の内容と最近の研究成果との関係などを紹介し、履修者に数理科学の現代数学における役割を考えるヒントを与える(A-2 世界の現状を理解し、説明する力)。【同時双方向型授業+対面授業】
【事前学習】第9~11回の発表内容を復習しておくこと。 (2時間)
【事後学習】ふりかえりで得られた課題を整理し、自由発表のテーマを通して現代社会における代数系の役割を理解する(A-2)。 (3時間)
13 スキルアップ演習(1):数学の基礎力をアップするための演習を行い(A-4 解決力),解答を共有する。【同時双方向型授業+対面授業】
【事前学習】第12回に配布されるプリントを解いてくること。 (2時間)
【事後学習】本演習で解けなかった問題を解きなおすこと(A-8)。 (3時間)
14 スキルアップ演習(2):数学の基礎力をアップするための演習を行い(A-4),解答を共有する。【同時双方向型授業+対面授業】
【事前学習】第12回に配布されるプリントを解いてくること。 (2時間)
【事後学習】本演習で解けなかった問題を解きなおすこと(A-8)。 (3時間)
15 まとめ: 教科書発表・自由発表の内容について復習し,知識を深める。【同時双方向型授業+対面授業】
【事前学習】第3~14回までの発表内容を見直しておくこと(A-8)。 (2時間)
【事後学習】卒論の準備として,数学講究1,2の記録を整理しておくこと(A-5, A-8)。 (3時間)
その他
教科書 恵羅 博・土屋守正 『グラフ理論 増補改訂版』 産業図書 2011年
参考書 使用しない
成績評価の方法及び基準 授業参画度(100%)
・ゼミ内での発表を「準備状況,分かりやすさ,内容の正確さ」の視点から評価する。
・ゼミ内での質問・議論を「頻度,的確さ,積極性」の視点から評価する。
・事後学習(演習問題)の進捗状況を評価する。
以上を授業参画度として評価する。
能力(A-1)から(A-8)の習熟度については、別途配布のチェック項目により評価する。
オフィスアワー 常時受け付けますが,ラインやメールで事前に連絡して下さい。

このページのトップ