文理学部シラバスTOP > 大学院博士前期課程 > 社会学専攻 > データサイエンス基礎研究
日本大学ロゴ

データサイエンス基礎研究

このページを印刷する

令和2年度以降入学者 データサイエンス基礎研究
教員名 菅野剛
単位数    2 課程 前期課程 開講区分 文理学部
科目群 社会学専攻
学期 前期 履修区分 選択必修
授業の形態 オンデマンド型授業を基本とし、一部のみ同時双方向型授業 (NU-AppsG, Google Classroom, Google Meet)
Google Classroom を利用します。
https://classroom.google.com/

初回の参加や補足情報、問い合わせについては http://bit.ly/suganoclass を参照して下さい。

日本大学の Google アカウント NU-AppsG によるログインが必要です。
https://mail.google.com/a/g.nihon-u.ac.jp

教員の NU-Apps と 学生の NU-AppsG はドメインが異なるため、教員が Google Classroom 上で Google Meet を設定しても、リンクが学生に表示されない可能性があります。その場合、毎回 Google Meet のリンクを手動で通知します。

Blackboard ID: 20213840 (Blackboard のコースへの登録はしなくても大丈夫です。Blackboard は授業では使いませんので、ご注意下さい。)
授業概要 Introduction to Programming and Data Science
授業のねらい・到達目標 Be aware of confirmation bias and train yourself to make logical decisions whenever possible.
Learners will become familiar with the world's lingua franca: English, statistics, and programming.
授業の方法 授業の形式:【講義,演習】
Classes to be held online.
If the first class is not held in the classroom, please refer to the above web page and join the Google Classroom class.
Online instruction is available with Google Classroom, etc.
Preparation for class by reading textbooks and by learning online resources beforehand is required.
Discuss the topics and applied data analysis during the class.
Programming and analyses are provided as pre-course work and homework.
NU-MailG accounts and joining to Google Classroom are required.
(BYOD: Bring your own device. ASUS Chromebook Flip C101PA available for students.)
Courses are to be closed on no registration.
授業計画
1 Classroom: Notification of NU-AppsG accounts, password reminder settings, password settings, how to use Google Classroom, joining a class, Google Colaboratory, Python, Introduction to Programming and Data Science.
【事前学習】Pre-course work: Introduction to Programming and Data Science (2時間)
【事後学習】Homework: Introduction to Programming and Data Science (2時間)
2 Introduction to Python
【事前学習】Pre-course work: Introduction to Python (2時間)
【事後学習】Homework: Introduction to Python (2時間)
3 Core Elements of Programs
【事前学習】Pre-course work: Core Elements of Programs (2時間)
【事後学習】Homework: Core Elements of Programs (2時間)
4 Simple Algorithms
【事前学習】Pre-course work: Simple Algorithms (2時間)
【事後学習】Homework: Simple Algorithms (2時間)
5 Functions, scoping, and abstraction
【事前学習】Pre-course work: Functions (2時間)
【事後学習】Homework: Functions (2時間)
6 Tuples and Lists
【事前学習】Pre-course work: Tuples and Lists (2時間)
【事後学習】Homework: Tuples and Lists (2時間)
7 Dictionaries
【事前学習】Pre-course work: Dictionaries (2時間)
【事後学習】Homework: Dictionaries (2時間)
8 Testing and Debugging
【事前学習】Pre-course work: Testing and Debugging (2時間)
【事後学習】Homework: Testing and Debugging (2時間)
9 Exceptions and Assertions
【事前学習】Pre-course work: Exceptions and Assertions (2時間)
【事後学習】Homework: Exceptions and Assertions (2時間)
10 Classes and object-oriented programming
【事前学習】Pre-course work: Classes and Inheritance (2時間)
【事後学習】Homework: Classes and Inheritance (2時間)
11 An Extended Example
【事前学習】Pre-course work: An Extended Example (2時間)
【事後学習】Homework: An Extended Example (2時間)
12 Computational Complexity
【事前学習】Pre-course work: Computational Complexity (2時間)
【事後学習】Homework: Computational Complexity (2時間)
13 Some simple algorithms and data structures
【事前学習】Pre-course work: Searching and Sorting Algorithms (2時間)
【事後学習】Homework: Searching and Sorting Algorithms (2時間)
14 Plotting and more about classes
【事前学習】Pre-course work: Plotting (2時間)
【事後学習】Homework: Plotting (2時間)
15 Programming and Data Science
【事前学習】Pre-course work: Programming and Data Science (2時間)
【事後学習】Homework: Programming and Data Science (2時間)
その他
教科書 使用しない
参考書 John V. Guttag, Introduction to Computation and Programming Using Python: With Application to Understanding Data., The MIT Press, 2016, 2 edition
P.G.ホーエル 『初等統計学』 培風館 1981年 第4版
T.H.ウォナコット・R.J.ウォナコット 『統計学序説』 培風館 1978年
P.G.ホーエル 『入門数理統計学』 培風館 1978年
『IT技術者の長寿と健康のために (長野宏宣・中川晋一・蒲池孝一・櫻田武嗣・坂口正芳・八尾武憲・衣笠愛子・穴山朝子)』 近代科学社 2016年
はじめての Google for Education https://gacco.org/
Ana Bell, Eric Grimson, and John Guttag. 6.0001 Introduction to Computer Science and Programming in Python. Fall 2016. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
John Guttag. 6.00SC Introduction to Computer Science and Programming. Spring 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/index.htm
成績評価の方法及び基準 授業内テスト:Online tests(50%)、授業参画度:Reaction or response papers(50%)
Self-directedness and Intellectual flexibility.
オフィスアワー Ask any questions at any time on Google Classroom. Appointment times will generally be available after the class.
備考 The contents of the syllabus are subject to change depending on the progress of the students. The time for pre-class work and homework is approximate.

このページのトップ