文理学部シラバスTOP > 大学院博士前期課程 > 地球情報数理科学専攻 > 代数学特論Ⅱ
日本大学ロゴ

代数学特論Ⅱ

このページを印刷する

科目名 代数学特論Ⅱ
科目名 代数学特論Ⅱ
教員名 吉田 健一
単位数    2 課程 前期課程 開講区分 文理学部
科目群 地球情報数理科学専攻
学期 後期 履修区分 選択
授業テーマ 可換環論とホモロジー代数の基礎を学ぶ.
授業のねらい・到達目標 可換環論の基礎知識を習得し, イデアル論及びホモロジー代数を用いて,環構造の分析能力を身に着ける.
授業の方法 講義形式で行う.
事前学修・事後学修,授業計画コメント 事後学習は参考書の演習問題より出題する.
授業計画
1イデアルと剰余類環,環の同型定理
【事前学習】参考書1.1 環の定義, 1.2 環の準同型写像と部分環を事前に学習しておくこと.
2整域と体,極大イデアルと素イデアル
【事後学習】参考書1.3, 1.4 の課題より指定の問題を解いてくること.
3Zorn の補題
【事後学習】参考書2節の課題より指定の問題を解いてくること.
4局所化,商体
【事後学習】参考書3節の課題より指定の問題を解いてくること.
5多項式環
【事後学習】参考書4.1, 4.2節の課題より指定の問題を解いてくること.
6部分代数
【事後学習】参考書4.3節の課題より指定の問題を解いてくること.
7体上の1変数多項式環の性質, 多項式の既約性
【事後学習】参考書5節の課題より指定の問題を解いてくること.
8一意分解整域
【事後学習】参考書7節の課題より指定の問題を解いてくること.
9イデアルの基本演算, 根基
【事後学習】参考書8.1, 8.2節の課題より指定の問題を解いてくること.
10ネーター環と準素分解, アルチン環
【事後学習】参考書8.5, 8.6節の課題より指定の問題を解いてくること.
11ホモロジー代数の基礎
【事後学習】参考書10節の課題より指定の問題を解いてくること.
12テンソル積
【事後学習】参考書11節の課題より指定の問題を解いてくること.
13研究発表1
14研究発表2
15まとめ
その他
参考書 後藤四郎 『可換環論の勘所』
講義内で適宜指示する
成績評価の方法及び基準 平常点(30%)、レポート(30%)、授業参画度(40%)
オフィスアワー 講義の最初の時間に指示する.

このページのトップ