検索したい科目/教員名/キーワードを入力し「検索開始」ボタンをクリックしてください。
※教員名では姓と名の間に1文字スペースを入れずに、検索してください。
令和2年度以降入学者 | 物理学概論2 | ||||
---|---|---|---|---|---|
令和元年度以前入学者 | 物理の基礎2 | ||||
教員名 | 石田浩 | ||||
単位数 | 2 | 学年 | 1 | 開講区分 | 文理学部 |
科目群 | 物理学科 | ||||
学期 | 後期 | 履修区分 | 必修 |
授業の形態 | 対面授業 BlackboardのコースID:20224440 |
---|---|
授業概要 | 物理学科の学科専⾨科⽬を学ぶために必要な基礎知識を学ぶ。 |
授業のねらい・到達目標 | (授業のねらい) 「物理学概論1」に続き、物理の各分野の専⾨科⽬を学ぶ上で必要となる基礎知識を⾝につける。 (到達⽬標) ・2次元直交座標系の回転について理解し計算できる。(A-3-1) ・3次元直交座標系の回転、反転、鏡映操作について理解し計算できる。(A-3-1) ・3x3行列の逆行列と行列式が計算できる、3次元ベクトルの内積とベクトル積が計算できる。(A-3-1) ・3x3直交行列の性質を説明できる。(A-3-1) ・スカラー、ベクトル、テンソル等の物理量について説明できる。(A-3-1) ・極性ベクトルと軸性ベクトルの違いを理解して説明できる。(A-3-1) ・スカラー場の勾配、ベクトル場の発散と回転について理解して計算できる。(A-3-1) ・カリレイ変換とローレンツ変換について説明できる。時間と空間を合わせた4次元ベクトルについて説明できる。(A-3-1) ・物事を科学的根拠に基づいて批判的、論理的に考察し、既存の知識にとらわれることなく、その物事の本質を捉えることができる。(A-3-1) ・物事を論理的に理解し、説明することができる。(A-3-1) この科目は文理学部(学士(理学))のDP3及びCP3に対応しています。 |
授業の方法 | 授業の形式【講義】 教室での板書による通常の対面授業を主体とする。場合によっては、オンデマンド型(授業テキストおよび音声ファイル配信)の遠隔授業を組み合わせる。また、教室で授業時間が足りない場合は、BlackBoardを用いて小テストを実施する。 本授業の事前・事後学習は、各2時間の学習を目安とします。対面授業に参加できない場合は、BlackBoard上のテストおよび課題を提出する。 |
履修条件 | ・物理学科以外の学⽣の履修は認めない。 ・他学科の理科教職課程の学⽣は、別時間に開講している教職⽤「物理学概論2」を履修すること。 |
授業計画 | |
---|---|
1 |
2x2直交行列を使って2次元直交座標系の回転を表す。固定座標系の点の回転と、座標系の回転の違いを区別する。(A-3-1)
【事前学習】「線形代数1」で学習した行列、行列式について復習しておく。 (2時間) 【事後学習】教材のパワーポイントファイルと授業でとったメモをもとに講義ノートを作成する。 (2時間) |
2 |
3x3直交座標系について学ぶ。右手系と左手系の違いを理解する。3次元直交座標系を、与えられた軸の周りに任意の角度回転した座標系を考え、2つの座標系を関係づける3x3直交変換の行列を導く。準備として3x3行列の行列式と逆行列について復習する。(A-3-1)
【事前学習】線形代数1で学習した3x3行列、行列式について復習しておく。 (2時間) 【事後学習】授業中に説明したz軸のまわりの回転を手本にして、回転軸がx軸、y軸の場合の座標系の回転に関する関係式を導く。 (2時間) |
3 |
3次元直交座標の平面に関する鏡映変換の公式を導く。また座標系の空間反転について学ぶ。(A-3-1)
【事前学習】線形代数1で学んだ行列の積の計算について復習する。 (2時間) 【事後学習】小テストの問題をもう一度解き、不明な点があればノートで確認する。 (2時間) |
4 |
物理量は座標系によって変わるが、物理法則は座標系によらないことを学ぶ。物理量が座標変換によってどのように変換されるかによってスカラー、ベクトル、テンソル量に分類されること理解する。(A-3-1)
【事前学習】高校数学で学んだベクトルについて復習しておく。 (2時間) 【事後学習】力学、電磁気学で学んだ物理量をスカラー、ベクトルに分類した表を作成する。 (2時間) |
5 |
極性ベクトルと軸性ベクトルの定義を学ぶ。電場は極性ベクトルだが、磁場は軸性ベクトルであることを学ぶ。ベクトル積とベクトル積で定義される物量が座標変換でどのように変換するかを調べる。(A-3-1)
【事前学習】小テストに備えて3x3行列の逆行列計算方法を復習して、参照なしに計算できるようにする。 (2時間) 【事後学習】力学、電磁気学で学んだ物理量を極性ベクトルと軸性ベクトルに分類した表を作成する。 (2時間) |
6 |
空間反転、鏡映変換によって極性ベクトルと軸性ベクトルがどのように変換するかを学ぶ。電磁場中を運動する荷電粒子の運動方程式が、反転や鏡映変換で不変であることを理解する。(A-3-1)
【事前学習】荷電粒子にはたらく力、ローレンツ力について高校の教科書で復習する。 (2時間) 【事後学習】ベクトル積を使ったローレンツ力の表式を使いこなせるように演習問題を解く。 (2時間) |
7 |
「弱い相互作用」に関する物理法則は空間反転操作で不変でないことを学ぶ。(A-3-1)
【事前学習】高校「物理」の「原子」章にある素粒子、基本の力について復習する。 (2時間) 【事後学習】第1~7回までの授業内容についてノートで復習する。 (2時間) |
8 |
力学で学んだポテンシャルエネルギーや電位などスカラー場について復習する。スカラー場の勾配(gradient)について学び、勾配がベクトル量であることを理解する。(A-3-1)
【事前学習】「微分積分2」で学んだ偏微分について復習しておく。 (2時間) 【事後学習】クーロンポテンシャルや重力ポテンシャルの勾配の計算練習をする。 (2時間) |
9 |
電場などベクトル場について復習する。ベクトル場の発散(divergence)について学ぶ。“発散”の物理的意味を理解する。また発散が座標系によらないスカラーになることを証明する。(A-3-1)
【事前学習】「微分積分2」で学んだ合成関数の偏微分について復習しておく。 (2時間) 【事後学習】小テストの問題を復習して、同様な問題を自分で作って演習する。 (2時間) |
10 |
ベクトル場の回転(rotation)について学ぶ。“回転”の物理的意味を理解する。ベクトル場が極性ベクトルのとき、その回転が軸性ベクトルになることを学ぶ。(A-3-1)
【事前学習】「微分積分2」で学んだ高次の偏微分について復習しておく。 (2時間) 【事後学習】授業時に配布した勾配、発散、回転に関する演習問題を解く。 (2時間) |
11 |
直交座標系と、それに対して一定速度で運動する座標系の間のガリレイ変換について学ぶ。相対速度の公式を学ぶ。ニュートンの運動方程式がガリレイ変換で不変であることを学ぶ。(A-3-1)
【事前学習】高校「物理」の教科書で相対速度について復習する。 (2時間) 【事後学習】2つの座標系がガリレイ変換で結ばれるとき、運動量や運動エネルギーは2座標系でどのように変換するかを調べる。 (2時間) |
12 |
マイケルソン・モーリーの実験について紹介し、慣性系でみた光の速さが座標系によらず一定であることを学ぶ。ローレンツ変換の式を導く。(A-3-1)
【事前学習】高校「物理」の教科書で光と電磁波について復習しておく。 (2時間) 【事後学習】返却された小テストの問題をもう一度解いて復習する。 (2時間) |
13 |
ローレンツ変換を用いて運動する時計の遅れ、物体の収縮を議論する。運動する質点の固有時間、4次元運動量について学び、質点の運動方程式を学ぶ。光のドップラー効果を導く。(A-3-1)
【事前学習】「線形代数2」で学んだ一次変換について復習する。 (時間) 【事後学習】授業時に与えられた演習問題を解く。 (時間) |
14 |
これまでの授業を振り返り、期末テストを行う。(A-3-1)
【事前学習】これまでの授業内容について復習しておくこと。 (時間) 【事後学習】解けなかった問題について、もう⼀度テキストを参照して解きなおすこと。 (時間) |
15 |
まとめ(これまでの復習・解説を⾏い,講義内容の理解を深める)。(A-3-1)
【事前学習】物理学概論2のテキストをまとめたノートを整理して、2年次授業に備える。 (時間) 【事後学習】事前学習の続きを⾏う。 (時間) |
その他 | |
---|---|
教科書 | なし |
参考書 | なし |
成績評価の方法及び基準 | 授業内テスト:小テストおよび期末テストを実施する。(100%) テストの提出回数が十分でない場合は成績評価の対象としない。 対面授業に参加できない場合は、BlackBoard上のテストおよび課題提出状況により評価します。 |
オフィスアワー | 授業内容に関する質問は授業後あるいは学科事務室で受け付けます。その後、時間を調整して、物理学科図書室または本館1階で応対します。対面の実験授業の前後に設定できるようにします。 |