検索したい科目/教員名/キーワードを入力し「検索開始」ボタンをクリックしてください。
※教員名では姓と名の間に1文字スペースを入れずに、検索してください。
令和2年度以降入学者 | ホモロジー論 | ||||
---|---|---|---|---|---|
令和元年度以前入学者 | 代数学特論2 | ||||
教員名 | 大関一秀 | ||||
単位数 | 2 | 学年 | 3・4 | 開講区分 |
文理学部
(他学部生相互履修可) |
科目群 | 数学科 | ||||
学期 | 後期 | 履修区分 | 選択 |
授業形態 | 対面授業(一部遠隔授業) |
---|---|
授業の形態 | 対面授業(状況に応じて遠隔授業との併用で進める) |
Blackboard ID | 20234329 |
授業概要 | 現代の可換環論はホモロジー代数を導入して以降、急速な発展をしている。本講義では序盤に可換環とイデアルついて復習をした上で、中盤にはネーター環およびアルティン環の理論について学修する。終盤では、環上の加群について解説した上で、ホモロジー代数の理論の導入を行い、可換環論におけるそれらの役割について学ぶ。 |
授業のねらい・到達目標 | <授業のねらい・到達目標> 現代可換環論を研究する上で必須の概念であるネーター環の基礎理論を理解する。ネーター環の理論は可換環論のみならず多くの分野で活用されており、その特徴と役割について説明出来るようになる。また、環上の加群はベクトル空間の自然な拡張であり、どの様な数学を学ぶにしても知っておくべき内容であり、それらの手法を活用出来るようになる。 代数学は言語としての性格を持ち合わせており、抽象的な内容を具体例を通じて理解する事が肝要である。 ・代数学の抽象的な内容を具体例を通して説明できる。 <ディプロマポリシーとの関係> この科目は, 文理学部(学士(理学))のディプロマポリシー DP3,4,5,8 及びカリキュラムポリシー CP3,4,5,8に対応しています。 なお,この科目は旧カリキュラム(令和元年度以前入学者が対象)においては,文理学部(学士(理学))のディプロマポリシー DP3,DP6 及びカリキュラムポリシー CP1,CP9に対応しています。 <日本大学教育憲章との関係> ・自らが獲得してきた数理科学的知識を基礎とし、その上で既存の知識にとらわれることなく、数理科学的根拠に基づいて論理的に考察することができる(A-3-3)。 ・日常生活における現象に潜む数理科学的問題を発見し、専門的知識に基づいて解決案を作成できる(A-4-3)。 ・新しい問題に取り組む意識を持ち、そのために必要な情報を収集することができる(A-5-2)。 ・自分の学修経験の振り返りを継続的に行うことができる(A-8-1)。 |
授業の形式 | 講義、演習 |
授業の方法 | 授業の内容がレポート課題に直結するので毎回ノートをとり予習復習すること。 授業の終盤に演習を実施することもある。 提出や教材の受け渡しは主にBlackboardを通じて行う。課題の提出方法については授業内で告知する。 対面授業に参加できない場合は、担当教員に事前に許可を得ること。 その場合には、Zoom などによる参加を検討しているが、オンデマンド教材を配信することもある。 |
授業計画 | |
---|---|
1 |
本講義内容や進め方、可換環およびネーター環についての概要について理解する(A-3,A-4)
【事前学習】環とイデアルについて復習しておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
2 |
環とイデアルについて学ぶ (A-3,A-4)
【事前学習】環とイデアルの基本性質について調べておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
3 |
素イデアルと極大イデアルについて学ぶ (A-3,A-4)
【事前学習】素イデアルと極大イデアルについて定義と基本性質を確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
4 |
多項式環について学ぶ (A-3,A-4)
【事前学習】多項式環について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
5 |
局所化について学ぶ (A-3,A-4)
【事前学習】局所化について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
6 |
ネーター環について学ぶ(1)~定義と基本性質 (A-3,A-4)
【事前学習】ネーター環の定義と基本性質について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
7 |
ネーター環について学ぶ(2)~ヒルベルトの基底定理 (A-3,A-4,A-5)
【事前学習】ヒルベルトの基底定理について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
8 |
これまでの復習とまとめ (A-3,A-4)
【事前学習】第7回目までの内容を復習しておくこと (2時間) 【事後学習】課題をレポートに纏めて提出 (4時間) 【授業形態】対面授業、オンデマンド型授業 |
9 |
ネーター環について学ぶ(3)~準素分解の存在 (A-3,A-4,A-5)
【事前学習】準素分解について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
10 |
アルティン環について学ぶ(1)~定義と基本性質(A-3,A-4)
【事前学習】アルティン環の定義と基本性質について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
11 |
アルティン環について学ぶ(2)~ネーター環との関係について (A-3,A-4)
【事前学習】アルティン環とネーター環の関係について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
12 |
環上の加群について学ぶ(1)~定義と基本性質 (A-3,A-4)
【事前学習】環上の加群の定義と基本性質について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
13 |
環上の加群について学ぶ(2)~完全列について (A-3,A-4)
【事前学習】加群の完全列について確認をしておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
14 |
環上の加群について学ぶ(3)~ホモロジー代数学への活用 (A-3,A-4,A-5)
【事前学習】ホモロジー代数学とは何かについて調べておくこと (2時間) 【事後学習】今回のノートを整理しておくこと (2時間) 【授業形態】対面授業、オンデマンド型授業 |
15 |
まとめと復習(A-8)
【事前学習】第14回目までの内容を復習しておくこと (2時間) 【事後学習】課題をレポートに纏めて提出 (4時間) 【授業形態】対面授業、オンデマンド型授業 |
その他 | |
---|---|
教科書 | 教科書は特に指定しない。 |
参考書 | 参考書は特に指定はしないが、受講者の理解度等によって、講義中に指定することもある。 |
成績評価の方法及び基準 | レポート:中間レポートと期末レポートを実施する。課題に対する記述や表現、論理の正確さなどを評価する。(80%)、授業参画度:演習への参加状況により評価する。(20%) 授業の残り時間に応じて演習を実施する。授業内で扱えなかった問題をレポート課題として出す。 |
オフィスアワー | 講義終了後に質問を受け付ける。その他に質問がある場合は、適宜相談をして決める。 |
備考 | Blackboardにおいて必要な教材を配布する。但し、課題の提出方法については授業内で告知する。 |